Start: $A = (4, -3); B = (5, -1); C = (-1, -2)$ equation g' line $l: \underline{r} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + s \begin{pmatrix} 3 \\ 4 \end{pmatrix}$	Find an equation of the line passing through the point A parallel to BC		Find an equation of the line passing through the points A and B
	Find an equation of the line passing through the point A perpendicular to BC		Find an equation of the line passing through the points A and C
	Find an equation of the line passing through the point B parallel to AC		Find an equation of the line passing through the points B and C
	Find an equation of the line passing through the point B perpendicular to AC		ABDC is a parallelogram. Find the position vector of D.
	Find an equation of the line passing through the point C parallel to AB	More resources from www.r	ACBD is a parallelogram. Find the position vector of D.

The point $\begin{pmatrix} 7\\10 \end{pmatrix}$ lies on the line l when $s=$		Find an equation of the line passing through the point B parallel to the line $\frac{r}{2} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} + m \begin{pmatrix} 4 \\ 5 \end{pmatrix}$
The point $\begin{pmatrix} -2\\ -2 \end{pmatrix}$ lies on the line l when $s =$		Find an equation of the line passing through the point C parallel to the line $r = \begin{pmatrix} 1 \\ 4 \end{pmatrix} + m \begin{pmatrix} 2 \\ 3 \end{pmatrix}$
The point $\begin{pmatrix} -8\\ -10 \end{pmatrix}$ lies on the line l when $s =$		Find an equation of the line passing through the point A parallel to the line $r = \begin{pmatrix} 2 \\ 3 \end{pmatrix} + m \begin{pmatrix} 4 \\ 5 \end{pmatrix}$
Find an equation of the line passing through the point A perpendicular to AC		Find an equation of the line passing through the point B perpendicular to the line $r = \begin{pmatrix} 2 \\ 3 \end{pmatrix} + m \begin{pmatrix} 4 \\ 5 \end{pmatrix}$
Find an equation of the line passing through the point C perpendicular to AC	More resources from www.r	Find an equation of the line passing through the point A perpendicular to the line $\underline{r} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} + m \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ nathssite.com